
sysctlinfo: a new interface to visit the FreeBSD

sysctl MIB and to pass the objects info to userland

Alfonso Sabato Siciliano
alfonso.siciliano@email.com

BSDCan 2020, Ottawa, Canada

Abstract

The 4.4BSD operating system introduced the sysctl
system call to get or set the state of the system, the
kernel exposes the available parameters for sysctl as
objects of a Management Information Base. Nowa-
days FreeBSD has thousands of sysctl parameters,
moreover, they can also be added or deleted dynam-
ically, so the kernel has to provide additional fea-
tures for exploring the MIB, converting the name
of a parameter in its corresponding MIB identifier
and getting the info of an object (e.g., name, de-
scription, type, etc.). Currently the kernel provides
an undocumented interface to fulfill these tasks, it
was introduced over twenty years ago, this paper
presents a new interface providing new features and
improving the efficiency to access to the MIB.

1 Introduction

The FreeBSD [1] kernel maintains a Management
Information Base (”MIB”) where a component
(”object”) represents a parameter of the system.
The MIB provides a convenient hierarchical nota-
tion to describe the kernel namespace [2], each ob-
ject has a number so an Object Identifier (”OID”)
is a series of integers separated by periods. The
sysctl system call [3] explores the MIB to find an
object by its OID then it can retrieve or set the
value of the corresponding parameter.

The MIB is implemented by a collection of trees,
the root nodes are the top level objects and are
stored as entries of a SLIST [4], each node repre-
sents an object and is defined by a struct sysctl oid
[Listing 1]; the complete MIB data structure is

known as sysctl MIB-Tree or sysctl tree.

Listing 1: sysctl tree node

s t r u c t s y s c t l o i d {
s t r u c t s y s c t l o i d l i s t o i d c h i l d r e n ;
s t r u c t s y s c t l o i d l i s t ∗ o id parent ;
SLIST ENTRY(s y s c t l o i d) o i d l i n k ;
i n t oid number ;
u i n t o id k ind ;
void ∗ o id a rg1 ;
intmax t o id a rg2 ;
const char ∗oid name ;
i n t (∗ o id hand l e r) (SYSCTL HANDLER ARGS) ;
const char ∗ o id fmt ;
i n t o i d r e f c n t ;
u i n t o id runn ing ;
const char ∗ o i d d e s c r ;
const char ∗ o i d l a b e l ;

} ;

The sysctl syscall [Listing 2] represents an OID
by an array of integers and an unsigned integer,
when the node with the specified OID is found its
handler is called: it can pass the values between
the kernel and userspace via two buffers.

Listing 2: sysctl() system call

i n t
s y s c t l (const i n t ∗ id , u i n t i d l e v e l ,

void ∗oldp , s i z e t ∗ old lenp ,
const void ∗newp , s i z e t newlen) ;

It is often necessary finding an object not for its
value (calling the handler) but to retrieve its infor-
mation (e.g., name, description, type, next node,
etc.), so the kernel provides an undocumented in-
terface, sysctlinfo is a new interface to visit the
sysctl tree and to pass the info of a node to user-
land.

1

The rest of the paper is organized as follows: Sec-
tion 2 gives a description of the current interface
and its limitations, Section 3 introduces sysctlinfo
and explains its design and implementation, real
world use cases are shown in the successive section.
The work is concluded with some consideration and
future directions.

2 The current interface

Currently the sysctl MIB consists of thousands of
objects, they have various info: types, formats,
flags, etc., furthermore the sysctl(9) interface [6]
allows to add or delete an object dinamically. The
sysctl syscall finds an object by its OID then can
get or set its value, only this functionality is not suf-
ficient, for example the sysctl(8) utility [5] needs to
explore the MIB, convert the name of an object in
its corresponding OID and finally to get the info of
an object to display properly its value [Listing 3].

Listing 3: sysctl(8)

% s y s c t l kern . ostype
kern . ostype : FreeBSD
% s y s c t l −t kern . ostype
kern . ostype : s t r i n g
% s y s c t l −aN
kern . ostype

. . .
compat . i a32 . maxdsiz

During the years new members were added to
struct sysctl oid [Listing 1]: oid descr and oid label,
they allow to know the description of an object and
to address the modern cloud computing require-
ments [11], [Lising 4].

Listing 4: object description and label

% s y s c t l −d kern . ostype
kern . ostype : Operating system type
% p ro m et h eu s s y s c t l e xp o r t e r kern .
f e a t u r e s . compat freebsd7
s y s c t l k e r n f e a t u r e s { f e a t u r e=”compat
f r e eb sd7 ”} 1

The FreeBSD kernel provides an undocumented
interface, introduced over twenty years ago [8], to
retrieve the info of an object: name, type, for-
mat, description, next leaf and OID by name,
later: description [9] and label [10]. The interface

is implemented in kern sysctl.c by a set of inter-
nal nodes: sysctl.name, sysctl.next, sysctl.oidfmt,
sysctl.oiddescr, sysctl.oidlabel and sysctlname2oid.
The internal nodes, except sysctl.name2oid, are
CTLTYPE NODEs with a not-NULL handler, so
the desired node is specified exending the OID of
the internal node, [Linsting 5] shows how getting
the description of a node via sysctl.oiddesc.

Listing 5: current interface API -1-

i o i d [0] = CTL SYSCTL;
i o i d [1] = CTL SYSCTL DESC;
memcpy(i o i d +2, oid , o i d l en ∗ s i z e o f (i n t)) ;
s y s c t l (i o id , o i d l en +2, buf , &bu f s i z e , 0 , 0) ;

The sysctl.name2oid internal node uses the newp
and oldp buffers [Listing 6].

Listing 6: current interface API -2-

i o i d [0] = CTL SYSCTL;
i o i d [1] = CTL SYSCTL NAME2OID;
s y s c t l (i o id , 2 , oid , o id l en ,

name , s t r l e n (name) +1);

Limitations of the current interface

The CTL MAXNAME constant, in sys/sysctl.h, defines
the max level of an OID, actually it is 24, so
sysctl(9) can add a node of 24 levels:

x1.x2.x3.x4.x5.x6.x7.x8.x9.x10.x11.

x12.x13.x14.x15.x16.x17.x18.x19.x20.

x21.x22.x23.x24

and the sysctl() syscall can get or set its value.
Unfortunately, the current interface can manage
an object up to CTL MAXNAME-2 levels because
the internal nodes, except sysctl.name2oid, use 2
levels for their OID (see sysctl() of [Listing 5]),
consequently an utility like sysctl(8) fails with an
object of 23 or 24 levels [Listing 7].

Listing 7: sysctl(8) false negative

% / sb in / s y s c t l x1
s y s c t l : s y s c t l (getnext) −1 88 : Cannot
a l l o c a t e memory
% / sb in / s y s c t l x1 . x2 . x3 . x4 . x5 . x6 . x7 . x8 .
x9 . x10 . x11 . x12 . x13 . x14 . x15 . x16 . x17 . x18 .
x19 . x20 . x21 . x22 . x23 . x24
s y s c t l : s y s c t l fmt −1 1024 22 : I nva l i d
argument

2

The current interface provides sysctl.next to ex-
plore the MIB, it finds the specified object and gets
the next leaf. However a MIB explorer [Figure 1]
needs to retrieve also the next internal node. The
early versions of sysctlview [18], a graphical sysctl
MIB explorer, wasted computation in userspace
comparing the OIDs of two consecutive leaves to
retrieve the internal nodes.

Figure 1: sysctlview

The sysctl.name node finds an object by
its OID and gets its name, example: [1.1] →
”kern.ostype”. However if no object has the
specified OID the internal node builds a ”fake”
name depending on the input OID and returns
always ’0’ false positive [Listing 5], example:
[1.1.100.500.1000] → ”kern.ostype.100.500.1000”
or a totally non-existent OID [3000.4000.5000] →
”3000.4000.5000”. This behavior is described as a
bug by the sysctlmibinfo library [14], it could be
useful to have an internal node returns error if no
node exists with the specified OID.

The sysctl.name2oid convert a name of an ob-
ject in its OID, it is used internally by sysctl-
byname() [3]. Unfortunately this internal node
can not manage an extened name for the han-
dler of a CTLTYPE NODE with a not-NULL, so un-
like sysctl(3), sysctlbyname() can not get or set the

value of an object like ”kern.proc.pid.1”.

Furthermore sysctl.name2oid finishes to build
the OID if a level-name is just the ”NULL string”,
so sysctlbyname() could get or set the value of an
unwanted object. Consider [Listing 8], the sysctl(8)
utility uses sysctl.name2oid to retrieve the OID of
”security.jail.param.allow.mount.”, so it receives an
incomplete OID, in fact it shows the requested node
and its brothers.

Listing 8: sysctl(8) shows unwanted objects

% s y s c t l s e c u r i t y . j a i l . param . a l low . mount .
s e c u r i t y . j a i l . param . a l low . mount . tmpfs : 0
s e c u r i t y . j a i l . param . a l low . mount . debugfs : 0
s e c u r i t y . j a i l . param . a l low . mount . anon inode f s : 0
s e c u r i t y . j a i l . param . a l low . mount . p r o c f s : 0
s e c u r i t y . j a i l . param . a l low . mount . dev f s : 0
s e c u r i t y . j a i l . param . a l low . mount . : 0

Finally, the current interface does not take care
of security: in capability mode [13] it exposes the
info of a nodes without the CTLFLAG CAPRD or
CTLFLAG CAPWR flag.

3 A new interface

This paper presents a new interface: sysctlinfo [16],
its purpose is to address the limitations of the cur-
rent interface, to improve the efficiency and to im-
plement new features; moreover the project pro-
vides: a README, a manual, helper macros, ex-
amples, and converted tools. Obviously the inter-
faces can coexist, the utilities and libraries can con-
tinue to use the current kernel interface while the
converted tools can take the advantages by using
sysctlinfo.

Features

Primarily sysctlinfo provides a new set of in-
ternal nodes correspondig to the current in-
terface, [Table 1] for a comparision, the new
nodes: sysctl.entryfakename, sysctl.entrydesc,
sysctl.entrylabel, sysctl.entrykind, sysctl.entryfmt,
sysctl.entrynextleaf and sysctl.entryfakeidbyname
can manage an object up to CTL MAXNAME levels;
[Listing 9] displays the output of the sysctl(8) util-
ity converted to use sysctlinfo, compare with [List-
ing 7].

3

Listing 9: sysctl(8) using sysctlinfo

% sy s c t l x1
x1 . x2 . x3 . x4 . x5 . x6 . x7 . x8 . x9 . x10 . x11 .
x12 . x13 . x14 . x15 . x16 . x17 . x18 . x19 . x20 .
x21 . x22 . x23 . x24 : 24
% s y s c t l x1 . x2 . x3 . x4 . x5 . x6 . x7 . x8 . x9 .
x10 . x11 . x12 . x13 . x14 . x15 . x16 . x17 . x18 .
x19 . x20 . x21 . x22 . x23 . x24
x1 . x2 . x3 . x4 . x5 . x6 . x7 . x8 . x9 . x10 . x11 .
x12 . x13 . x14 . x15 . x16 . x17 . x18 . x19 . x20 .
x21 . x22 . x23 . x24 : 24

Moreover new features were implemented. The
support for the capability mode (the info of a node
without CTLFLAG CAPRD or CTLFLAG CAPWR are not
passed to the userland after a cap enter() call
[13]). Unlike sysctl.entryfakename or sysctl.name,
sysctl.entryname does not build a fake name and
returns an error if no object has the specified OID.
sysctl.entrynextnode avoids useless computation in
userspace by getting the next leaf or next internal
node. sysctl.entryidbyname builds a correct OID
also if some level-name is just the ”NULL string”,
compare [Listing 10] with [Listing 8].

Listing 10: sysctl utility using sysctlinfo

% sy s c t l s e c u r i t y . j a i l . param . a l low . mount .
s e c u r i t y . j a i l . param . a l low . mount . : 0

The new interface is still inefficient: it can
pass to the userland only a single info at a time,
then the kernel needs to find the same objects
many times, so new nodes were implemented:
sysctl.entryallinfo, sysctl.entryallinfo withnextnode
and sysctl.entryallinfo withnextleaf, they are 30%
more efficient to get all info of a node [Figure 2].

Finally, *byname nodes were added:
sysctl.entryidinputyname, sysctl.entrydescbyname,
sysctl.entrylabelbyname, sysctl.entrykindbyname,
sysctl.entryfmtbyname, sysctl.entryallinfobyname,
sysctl.entryallinfobyname withnextnode and
sysctl.entryallinfobyname withnextleaf, they
search the object by its name avoiding to call
sysctl.name2oid (or similar) to explore the MIB
just to find the corresponding OID.

Note, sysctl.entryidinputyname [17] can manage
an extended name with the input for the handler
of the object, example: ”kern.proc.pid.1”, then it
allows to sysctlbyname() to get or set the value a
CTLTYPE NODE with a not-NULL handler.

Figure 2: sysctlview - object window

API

The sysctlinfo interface provides a new API, it de-
fines two main macros [Listing 11], so the request
for info instead of value is obvious, compare with
[Listing 5] and [Listing 6].

Listing 11: sysctlinfo API

i n t
SYSCTLINFO(in t ∗ id , s i z e t i d l e v e l ,
i n t prop [2] , void ∗buf , s i z e t ∗ bu f l en) ;

i n t
SYSCTLINFO BYNAME(char ∗name , i n t prop [2] ,
void ∗buf , s i z e t ∗ bu f l en) ;

The macros seek the node with id/idlevel or
name, then the information specified by prop is
copied into the buffer buf. Before the call buflen
gives the size of buf, after a successful call bu-
flen gives the amount of data copied; the size of
the info can be determined with the NULL argu-
ment for buf, the size will be returned in the lo-
cation pointed to by buflen. The value of prop[0]
should be CTL SYSCTL and prop[1] can specify the
desired info, the possible values are defined like con-
stants corrisponding to the sysctlinfo nodes [16].
SYSCTLINFO and SYSCTLINFO BYNAME re-
turn the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set
to indicate the error.

4

Implementation note

The core of sysctlinfo is just the
sysctlinfo interface() function, it implements
all the nodes using nothing from kern sysctl.c so
sysctlinfo can be loaded as a module or merged
anywhere in the kernel (possibly kern mib.c).

In capability mode sysctlinfo checks if the node
has the CTLFLAG CAPRD or CTLFLAG CAPWR flag be-
fore to pass its info to the userland, the exceptions
are: sysctl.entryfakename for compability with
sysctl.name and the explores sysctl.entrynextnode
and sysctl.entrynextleaf to allow to traverse the
MIB-Tree.

The *byname nodes are almost implementation
free, they search the node by its name then the code
of sysctlinfo interface() remains unchanged.

The sysctl MIB-tree is a critical section, while
sysctlinfo interface() explores the tree and passes
the info to the userland no nodes can be
added or deleted, unfortunaltely sysctl(3) releases
the lock (properly sysctl root handler locked()) be-
fore to call the handler of the a node, cor-
rectly the nodes of the current interface use
SYSCTL RLOCK(tracker) to take the reader-lock.
The solutions of sysctlinfo are:
• Using sysctl wlock() and sysctl wunlock() to get
the writer-lock, actually a reader-lock is sufficient
but the kernel does not provide this KPI outside
kern sysctl.c so this solution is suitable for the ker-
nel module
• Building a kernel patch, sysctlinfo.diff [16],
to provide sysctl rlock() and sysctl runlock() as
KPI to use SYSCTL RLOCK(tracker) outside
kern sysctl.c.

The *allinfo nodes serialize the info of a node, it
is not possible to pass the struct sysctl oid explic-
itly because the struct has not idlevel, moreover
oid number and oid name are not absolute but rel-
ative to the node.

4 Real world use cases

The sysctlinfo interface is available via a FreeBSD
port sysutils/sysctlinfo-kmod or by applying the
sysctlinfo.diff patch, the latter is more efficient be-
cause uses a shared-lock, moreover some BASE util-
ity is been converted: sysctl, sysctlbyname() and
sysctlnametomib(), they should be used to manage

Table 1: Interfaces comparision.

Current interface sysctlinfo

sysctl.name sysctl.entryfakename
sysctl.entryname

sysctl.next sysctl.entrynextleaf
sysctl.entrynextnode

sysctl.oidfmt (divided into entrykind and entryfmt)
sysctl.entrykind
sysctl.entryfmt

sysctl.oiddescr sysctl.entrydesc
sysctl.oidlabel sysctl.entrylabel

sysctl.entryallinfo
sysctl.entryallinfo withnextnode
sysctl.entryallinfo withnextleaf

sysctl.name2oid sysctl.fakeidbyname
sysctl.idbyname

sysctl.entrydescbyname
sysctl.entrylabelbyname
sysctl.entrykindbyname
sysctl.entryfmtbyname

sysctl.entryallinfobyname
sysctl.entryallinfobyname withnextnode
sysctl.entryallinfobyname withnextleaf

sysctl.entryidinputbyname

an object with an OID with 23 or 24 levels or if
some level-name is just the NULL string.

The tools using sysctlinfo are: sysctlview [18] and
nsysctl [19] (a sysctl(8) clone supporting LibXo [7]
and extra options [Listing 12]).

Listing 12: nsysctl utility

% nsy s c t l −−l i b xo=xml , p re t ty −NldtFG
kern . f e a t u r e s . compat f r e ebsd 32b i t
<object>

<name>kern . f e a t u r e s . compat f reebsd 32b i t</name>
<l abe l>f ea ture </l abe l>
<de s c r i p t i on>Compatible with 32−b i t FreeBSD
</de s c r i p t i on>
<type>i n t ege r </type>
<format>I</format>
<true−f l a g s>

<f l a g>RD</f l ag>
<f l a g>MPSAFE</f l ag>
<f l a g>CAPRD</f l ag>

</true−f l a g s>
<value>1</value>

</object>

5

The sysctlbyname-improved project [17] uses the
code of sysctlinfo to provide an improved clone of
sysctlbyname(), its implementation core is a new
internal node to resolve the OID of a node by its
name eventually extended with an input for the
handler.

Finally the sysctlmibinfo2 library [15] imple-
ments a high level API by wrapping sysctlinfo and
sysctlbyname-improved.

5 Conclusion

This paper presented sysctlinfo a new interface to
explore the sysctl MIB and to get the info about an
object. The new interface tries to improve the effi-
ciency, to implements new features and to address
the limitations of the current interface, the latter is
used by a multitude of tools and libraries so both
interfaces have to coexist in the same kernel, this
requirement is respected.

The interfaces are implemented by internal
nodes, the sysctl syscall has to find them, then their
respective handlers have to explore the MIB again
to find the specified object. This approch suffers
overhead, however it is not excessive because the
internal nodes belong to the first sub-tree of the
MIB.

In the future, a different solution could be a
sysctl-SNMP design: the OID is extended to spec-
ify a desired info, then the sysctl syscall has to find
just the wanted object. This efficient solution re-
quires non-trivial changes to the sysctl implemen-
tation in kern sysctl.c, therefore the internal nodes
are a right trade-off between efficiency and simplic-
ity.

6 Acknowledgements

I would like to thank the members of the FreeBSD
community to build an awesome operating system
sharing their code and providing excellent docu-
mentation.

References

[1] The FreeBSD project.
https://www.freebsd.org/

[2] Marshall Kirk McKusick, George V. Neville-
Neil, and Robert N.M. Watson. The Design
and Implementation of the FreeBSD Operat-
ing System. Second Edition, Addison-Wesley,
2015.

[3] FreeBSD Library Functions Manual,
sysctl, sysctlbyname, sysctlnametomib.
https://man.freebsd.org/sysctl/3, [On-
line; accessed January 18, 2020].

[4] FreeBSD Library Functions Manual,
SLIST INIT. https://man.freebsd.org/

queue/3. [Online; accessed January 18, 2020].

[5] FreeBSD System Manager’s Manual, sysctl.
https://man.freebsd.org/sysctl/8. [On-
line; accessed January 18, 2020].

[6] FreeBSD Kernel Developer’s Manual, Dy-
namic and static sysctl MIB creation func-
tions. https://man.freebsd.org/sysctl/9.
[Online; accessed January 18, 2020].

[7] FreeBSD Library Functions Manual, libxo.
https://man.freebsd.org/sysctl/9. [On-
line; accessed January 18, 2020].

[8] Revision 12623, https://svnweb.freebsd.

org/base?view=revision&revision=12623,
December 1995.

[9] Revision 88006, Add code to export and print
the description associated to sysctl variables.
https://svnweb.freebsd.org/base?view=

revision&revision=88006. December 2001.

[10] Revision 310051, Add support for attaching
aggregation labels to sysctl objects.
https://svnweb.freebsd.org/base?view=

revision&revision=310051. December 2016.

[11] Prometheus. https://prometheus.io/. [On-
line; accessed January 18, 2020].

[12] FreeBSD System Manager’s Man-
ual, prometheus sysctl exporter. https:

//man.freebsd.org/prometheus_sysctl_

exporter/8. [Online; accessed January 18,
2020].

6

[13] FreeBSD System Calls Manual, cap enter.
https://man.freebsd.org/cap_enter/2.
[Online; accessed January 18, 2020].

[14] Alfonso Sabato Siciliano. Manual Page
sysctlmibinfo(3). https://gitlab.com/

alfix/sysctlmibinfo. [Online; accessed
January 18, 2020].

[15] Alfonso Sabato Siciliano. Manual Page
sysctlmibinfo2(3). https://gitlab.com/

alfix/sysctlmibinfo2. [Online; accessed
January 18, 2020].

[16] Alfonso Sabato Siciliano. Manuals sysctlinfo.
https://gitlab.com/alfix/sysctlinfo.
[Online; accessed January 18, 2020].

[17] Alfonso Sabato Siciliano. Manuals
sysctlinfo. https://gitlab.com/alfix/

sysctlbyname-improved. [Online; accessed
January 18, 2020].

[18] Alfonso Sabato Siciliano. sysctlview: FreeBSD
sysctl MIB explorer. https://gitlab.com/

alfix/sysctlview. [Online; accessed January
18, 2020].

[19] Alfonso Sabato Siciliano. nsysctl: util-
ity to get and set the FreeBSD kernel
state. https://gitlab.com/alfix/nsysctl.
html. [Online; accessed January 18, 2020].

7

